Cluster Title: Construct and compare linear, quadratic, and exponential models and solve problems.

Standard F.LE.1: Distinguish between situations that can be modeled with linear functions and with exponential functions.

- a. Prove that linear functions grow by equal differences over equal intervals; exponential functions grow by equal factors over equal intervals.
- b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.
- c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

Concepts and Skills to Master

- Justify the fact that linear functions grow by equal difference over equal intervals using tables and graphs.
- Justify the fact that exponential functions grow by equal factors over equal intervals using tables and graphs.
- Recognize situations that can be modeled linearly or exponentially and describe the rate of change per unit as constant or the growth factor as a constant percent.

Supports for Teachers

Critical Background Knowledge				
Knowledge of percent				
Academic Vocabulary				
Interval, rate, factors, constant rate of change, percent rate per unit				
Suggested Instructional Strategies		Resources		
Model and explore a variety of linear and exponential functions,		Focus on Functions professional development		
analyzing what makes them change.				
Sample Formative Assessment Tasks				
Skill-based Task	Problem Ta	Problem Task		
An accountant has two ways of depreciating		Create a story that demonstrates one quantity changing at a		
equipment. One way is to depreciate by a fixed	constant rate per unit interval relative to another.			
amount each year. The other way is to depreciate by a				
fixed percentage each year. Which depreciation				
method is linear? Which depreciation method is				
exponential?				

Cluster Title: Construct and compare linear, quadratic, and exponential models and solve problems.

Standard F.LE.2: Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).

Concepts and Skills to Master

- Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph.
- Construct linear and exponential functions, including arithmetic and geometric sequences, given the description of a relationship.
- Construct linear functions, including arithmetic sequences, given input-output pairs, including those in a table.

Supports for Teachers

- Arithmetic and geometric sequences
- Function notation

Academic Vocabulary			
Exponential, linear, arithmetic, geometric, sequences, relationship, input-output, function			
Suggested Instructional Strategies	Resources		
Match various representations of the same function.	Exponential functions:		
	www.regentsprep.org/regents/math/algtrig/ATP		
	8b/examplesexponentialfunction.htm		
Sample Formative Assessment Tasks			

Skill-based Task

- Write a linear function that passes through (1,5) and (2,15).
- Write an exponential function that passes through (1,5) and (2,15).

Problem Task

Write a function that models the population of Smithville, a town that in 2003 was estimated to have 35,000 people that increases by 2.4% every year. Describe a reasonable way to use your function to predict future population in Smithville.

Cluster Title: Construct and compare linear, quadratic, and exponential models and solve problems.

Standard F.LE.3: Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.

Concepts and Skills to Master

• Observe that a quantity increasing exponentially eventually exceeds a quantity increasing linearly using graphs and tables.

Supports for Teachers

Critical Background Knowledge

- · Identify linear and exponential functions
- Graph linear and exponential functions
- · Rate of change

Academic Vocabulary

Linear, exponential, factor, difference

Suggested Instructional Strategies

• This standard should be taught in conjunction with others in this cluster.

Resources

Making it Happen (NCTM)

Sample Formative Assessment Tasks

Skill-based Task

Which increases faster, f(x) = 3x or $g(x) = 3^x$? Justify your answer.

Problem Task

What's the better deal, earning \$1000 a day for the rest of your life or earning \$.01 the first day, and doubling it every day for the rest of your life? How do you know? Do you think an 80-year-old would make the same choice? Should she?

Cluster Title: Interpret expressions for functions in terms of the situation they model.

Standard F.LE.5: Interpret the parameters in a linear or exponential function in terms of a context.

Concepts and Skills to Master

- Interpret the slope and x- and y-intercepts in a linear function in terms of a context.
- Interpret the base value and vertical shifts in an exponential function of the form $f(x) = b^x + k$ where b is an integer and k can equal zero.
- Interpret the base value and initial value in an exponential function of the form $f(x) = ab^x$ where b is an integer and a can be any positive integer, including 1.

Supports for Teachers

Oupports for Teachers				
Critical Background Knowledge				
Familiarity with linear and exponential functions				
Academic Vocabulary				
Linear, exponential, parameters				
Suggested Instructional Strategies		Resources		
Use applets or graphing technology to explore the effect of changing		www.illuminations.NCTM.org		
the slope and <i>y</i> -intercept of a linear equation.		 Function Matching 		
Use applets or graphing technology to explore the effect of changing				
the base value and constant of an exponential function.				
 Describe parameters in terms of their context in a story. 				
Sample Formative Assessment Tasks				
Skill-based Task	Problem Task			
You put \$500 under your mattress and also deposit \$500	Annie is picking apples with her sister. The number of apples			
in a bank with a 3% annual interest. Write an equation	·			
		utes Annie spends picking apples. What do the		
time t. Show how the base and vertical shift are displayed	numbers 22 ar	nd 12 tell you about Annie's apple picking?		
in the explicit form of the function.				